DescendingDrive__Pool#
- class DescendingDrive__Pool(
- n: int,
- poisson_batch_size: int | None = None,
- timestep__ms: Quantity__ms | None = None,
- process_type: str = 'poisson',
- shape: float = 3.0,
Bases:
_PoolContainer for a population of descending drive neurons.
Manages a collection of DD cells that generate spike trains using either Poisson or Gamma point processes for cortical input to spinal circuits.
- Parameters:
n (int) – Number of descending drive neurons to create.
poisson_batch_size (int, optional) – Batch size for exponential threshold generation algorithm (only used when process_type=”poisson”). Higher values improve statistical accuracy but increase computation. Typical values: 16-50. Required if process_type=”poisson”, ignored if process_type=”gamma”.
timestep__ms (float) – Time step for simulation (ms).
process_type (str, optional) – Type of point process: “poisson” or “gamma”, by default “poisson”. - “poisson”: Irregular firing (CV=1.0) - “gamma”: More regular firing with CV controlled by shape parameter
shape (float, optional) – Shape parameter for Gamma process (only used when process_type=”gamma”), by default 3.0. Controls spike regularity: - shape=1: Poisson-like (CV=1.0) - shape=2-5: Typical cortical neuron regularity (CV=0.45-0.71) - Higher values: More regular firing (CV=1/sqrt(shape))
Methods
Return sections and their initial voltages for NEURON simulation setup.