AffIb__Pool#

class AffIb__Pool(
n: int,
timestep__ms: Quantity__ms,
recruitment_thresholds: tuple[float, float] = (0, 40),
axon_velocities__m_per_s: tuple[Quantity__m_per_s, Quantity__m_per_s] = (64 * pq.m / pq.s, 72 * pq.m / pq.s),
axon_length__mm: Quantity__mm = 0.6 * pq.mm,
poisson_batch_size: int = 145,
init_order: int = 0,
)[source]#

Bases: _Pool

Container for a population of afferent Ib neurons.

Manages a collection of AffIb (type Ib afferent) cells that provide primary proprioceptive feedback from Golgi tendon organs to spinal circuits.

Parameters:
  • n (int) – Number of type Ib afferent neurons to create.

  • recruitment_thresholds (tuple[float, float]) – Min and max recruitment thresholds (Hz).

  • axon_velocities (tuple[float, float]) – Min and max axon conduction velocities (m/s).

  • axon_length (float) – Length of the axon (mm).

  • poisson_batch_size (int) – Batch size for exponential threshold generation algorithm.

  • timestep__ms (float) – Time step for simulation (ms).

  • init_order (int) – Initial order parameter for afferent initialization.

  • axon_velocities__m_per_s (tuple[Annotated[Quantity, IsAttr['dimensionality', IsAttr['unicode', IsEqual['m/s']]]], Annotated[Quantity, IsAttr['dimensionality', IsAttr['unicode', IsEqual['m/s']]]]])

  • axon_length__mm (Annotated[Quantity, IsAttr['dimensionality', IsAttr['unicode', IsEqual['mm']]]])

Methods

__init__

get_initialization_data

Return sections and their initial voltages for NEURON simulation setup.