GaussianNoise# class myoverse.transforms.GaussianNoise(std=0.1, p=1.0, **kwargs)[source]# Add Gaussian noise to the signal. Parameters: std (float) – Standard deviation of the noise. p (float) – Probability of applying the augmentation. Examples >>> x = torch.randn(64, 2048, device='cuda', names=('channel', 'time')) >>> noise = GaussianNoise(std=0.1) >>> y = noise(x) Methods __init__([std, p]) _apply(x) Apply the transform.