myoverse.models.definitions.raul_net.online.v16_classification.RaulNetV16.training_step#
- RaulNetV16.training_step(train_batch, batch_idx)[source]#
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx (int) – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary which can include any keys, but must include the key'loss'
in the case of automatic optimization.None
- In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.
- Return type:
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:
def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step()
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.