myoverse.models.definitions.raul_net.online.v16.RaulNetV16.test_step#
- RaulNetV16.test_step(batch, batch_idx)[source]#
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
- Return type:
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.