Note
Go to the end to download the full example code.
Training a deep learning model¶
This example shows how to train a deep learning model using the dataset created in the previous example.
Loading the dataset¶
To load the dataset we need to use the EMGDatasetLoader class.
Two parameters are required:
data_path: Path to the dataset file.
dataloader_parameters: Parameters for the DataLoader.
Training the model¶
from myoverse.models.definitions.raul_net.online.v16 import RaulNetV16
import lightning as L
# Create the model
model = RaulNetV16(
learning_rate=1e-4,
nr_of_input_channels=2,
input_length__samples=192,
nr_of_outputs=60,
nr_of_electrode_grids=5,
nr_of_electrodes_per_grid=64,
# Multiply following by 4, 8, 16 to have a useful network
cnn_encoder_channels=(4, 1, 1),
mlp_encoder_channels=(8, 8),
event_search_kernel_length=31,
event_search_kernel_stride=8,
)
trainer = L.Trainer(
accelerator="auto",
devices=1,
precision="16-mixed",
max_epochs=1,
log_every_n_steps=50,
logger=None,
enable_checkpointing=False,
deterministic=False,
)
trainer.fit(model, datamodule=loader)
/home/runner/work/MyoVerse/MyoVerse/.venv/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/accelerator_connector.py:512: You passed `Trainer(accelerator='cpu', precision='16-mixed')` but AMP with fp16 is not supported on CPU. Using `precision='bf16-mixed'` instead.
/home/runner/work/MyoVerse/MyoVerse/.venv/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=3` in the `DataLoader` to improve performance.
Sanity Checking: | | 0/? [00:00<?, ?it/s]/home/runner/work/MyoVerse/MyoVerse/.venv/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=3` in the `DataLoader` to improve performance.
Sanity Checking: 0%| | 0/2 [00:00<?, ?it/s]
Sanity Checking DataLoader 0: 0%| | 0/2 [00:00<?, ?it/s]
Sanity Checking DataLoader 0: 50%|█████ | 1/2 [00:00<00:00, 1.56it/s]
Sanity Checking DataLoader 0: 100%|██████████| 2/2 [00:00<00:00, 2.12it/s]
Training: | | 0/? [00:00<?, ?it/s]
Training: 0%| | 0/91 [00:00<?, ?it/s]
Epoch 0: 0%| | 0/91 [00:00<?, ?it/s]
Epoch 0: 1%| | 1/91 [00:01<02:34, 0.58it/s]
Epoch 0: 1%| | 1/91 [00:01<02:34, 0.58it/s, v_num=0, loss_step=53.30]
Epoch 0: 2%|▏ | 2/91 [00:03<02:28, 0.60it/s, v_num=0, loss_step=53.30]
Epoch 0: 2%|▏ | 2/91 [00:03<02:28, 0.60it/s, v_num=0, loss_step=53.80]
Epoch 0: 3%|▎ | 3/91 [00:04<02:26, 0.60it/s, v_num=0, loss_step=53.80]
Epoch 0: 3%|▎ | 3/91 [00:04<02:26, 0.60it/s, v_num=0, loss_step=53.20]
Epoch 0: 4%|▍ | 4/91 [00:06<02:25, 0.60it/s, v_num=0, loss_step=53.20]
Epoch 0: 4%|▍ | 4/91 [00:06<02:25, 0.60it/s, v_num=0, loss_step=53.80]
Epoch 0: 5%|▌ | 5/91 [00:08<02:23, 0.60it/s, v_num=0, loss_step=53.80]
Epoch 0: 5%|▌ | 5/91 [00:08<02:23, 0.60it/s, v_num=0, loss_step=53.90]
Epoch 0: 7%|▋ | 6/91 [00:09<02:21, 0.60it/s, v_num=0, loss_step=53.90]
Epoch 0: 7%|▋ | 6/91 [00:09<02:21, 0.60it/s, v_num=0, loss_step=54.20]
Epoch 0: 8%|▊ | 7/91 [00:11<02:18, 0.60it/s, v_num=0, loss_step=54.20]
Epoch 0: 8%|▊ | 7/91 [00:11<02:18, 0.60it/s, v_num=0, loss_step=53.20]
Epoch 0: 9%|▉ | 8/91 [00:13<02:17, 0.61it/s, v_num=0, loss_step=53.20]
Epoch 0: 9%|▉ | 8/91 [00:13<02:17, 0.61it/s, v_num=0, loss_step=53.60]
Epoch 0: 10%|▉ | 9/91 [00:14<02:15, 0.61it/s, v_num=0, loss_step=53.60]
Epoch 0: 10%|▉ | 9/91 [00:14<02:15, 0.61it/s, v_num=0, loss_step=53.50]
Epoch 0: 11%|█ | 10/91 [00:16<02:13, 0.61it/s, v_num=0, loss_step=53.50]
Epoch 0: 11%|█ | 10/91 [00:16<02:13, 0.61it/s, v_num=0, loss_step=53.40]
Epoch 0: 12%|█▏ | 11/91 [00:18<02:11, 0.61it/s, v_num=0, loss_step=53.40]
Epoch 0: 12%|█▏ | 11/91 [00:18<02:11, 0.61it/s, v_num=0, loss_step=53.70]
Epoch 0: 13%|█▎ | 12/91 [00:19<02:10, 0.61it/s, v_num=0, loss_step=53.70]
Epoch 0: 13%|█▎ | 12/91 [00:19<02:10, 0.61it/s, v_num=0, loss_step=53.50]
Epoch 0: 14%|█▍ | 13/91 [00:21<02:08, 0.61it/s, v_num=0, loss_step=53.50]
Epoch 0: 14%|█▍ | 13/91 [00:21<02:08, 0.61it/s, v_num=0, loss_step=53.20]
Epoch 0: 15%|█▌ | 14/91 [00:22<02:06, 0.61it/s, v_num=0, loss_step=53.20]
Epoch 0: 15%|█▌ | 14/91 [00:22<02:06, 0.61it/s, v_num=0, loss_step=53.60]
Epoch 0: 16%|█▋ | 15/91 [00:24<02:04, 0.61it/s, v_num=0, loss_step=53.60]
Epoch 0: 16%|█▋ | 15/91 [00:24<02:04, 0.61it/s, v_num=0, loss_step=53.00]
Epoch 0: 18%|█▊ | 16/91 [00:26<02:03, 0.61it/s, v_num=0, loss_step=53.00]
Epoch 0: 18%|█▊ | 16/91 [00:26<02:03, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 19%|█▊ | 17/91 [00:27<02:01, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 19%|█▊ | 17/91 [00:27<02:01, 0.61it/s, v_num=0, loss_step=53.70]
Epoch 0: 20%|█▉ | 18/91 [00:29<01:59, 0.61it/s, v_num=0, loss_step=53.70]
Epoch 0: 20%|█▉ | 18/91 [00:29<01:59, 0.61it/s, v_num=0, loss_step=53.90]
Epoch 0: 21%|██ | 19/91 [00:31<01:58, 0.61it/s, v_num=0, loss_step=53.90]
Epoch 0: 21%|██ | 19/91 [00:31<01:58, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 22%|██▏ | 20/91 [00:32<01:56, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 22%|██▏ | 20/91 [00:32<01:56, 0.61it/s, v_num=0, loss_step=53.40]
Epoch 0: 23%|██▎ | 21/91 [00:34<01:54, 0.61it/s, v_num=0, loss_step=53.40]
Epoch 0: 23%|██▎ | 21/91 [00:34<01:54, 0.61it/s, v_num=0, loss_step=54.00]
Epoch 0: 24%|██▍ | 22/91 [00:36<01:53, 0.61it/s, v_num=0, loss_step=54.00]
Epoch 0: 24%|██▍ | 22/91 [00:36<01:53, 0.61it/s, v_num=0, loss_step=52.30]
Epoch 0: 25%|██▌ | 23/91 [00:37<01:51, 0.61it/s, v_num=0, loss_step=52.30]
Epoch 0: 25%|██▌ | 23/91 [00:37<01:51, 0.61it/s, v_num=0, loss_step=52.80]
Epoch 0: 26%|██▋ | 24/91 [00:39<01:50, 0.61it/s, v_num=0, loss_step=52.80]
Epoch 0: 26%|██▋ | 24/91 [00:39<01:50, 0.61it/s, v_num=0, loss_step=52.80]
Epoch 0: 27%|██▋ | 25/91 [00:41<01:48, 0.61it/s, v_num=0, loss_step=52.80]
Epoch 0: 27%|██▋ | 25/91 [00:41<01:48, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 29%|██▊ | 26/91 [00:42<01:46, 0.61it/s, v_num=0, loss_step=52.90]
Epoch 0: 29%|██▊ | 26/91 [00:42<01:46, 0.61it/s, v_num=0, loss_step=52.00]
Epoch 0: 30%|██▉ | 27/91 [00:44<01:45, 0.61it/s, v_num=0, loss_step=52.00]
Epoch 0: 30%|██▉ | 27/91 [00:44<01:45, 0.61it/s, v_num=0, loss_step=52.60]
Epoch 0: 31%|███ | 28/91 [00:46<01:43, 0.61it/s, v_num=0, loss_step=52.60]
Epoch 0: 31%|███ | 28/91 [00:46<01:43, 0.61it/s, v_num=0, loss_step=51.70]
Epoch 0: 32%|███▏ | 29/91 [00:47<01:41, 0.61it/s, v_num=0, loss_step=51.70]
Epoch 0: 32%|███▏ | 29/91 [00:47<01:41, 0.61it/s, v_num=0, loss_step=51.40]
Epoch 0: 33%|███▎ | 30/91 [00:49<01:40, 0.61it/s, v_num=0, loss_step=51.40]
Epoch 0: 33%|███▎ | 30/91 [00:49<01:40, 0.61it/s, v_num=0, loss_step=51.00]
Epoch 0: 34%|███▍ | 31/91 [00:50<01:38, 0.61it/s, v_num=0, loss_step=51.00]
Epoch 0: 34%|███▍ | 31/91 [00:50<01:38, 0.61it/s, v_num=0, loss_step=50.40]
Epoch 0: 35%|███▌ | 32/91 [00:52<01:36, 0.61it/s, v_num=0, loss_step=50.40]
Epoch 0: 35%|███▌ | 32/91 [00:52<01:36, 0.61it/s, v_num=0, loss_step=50.20]
Epoch 0: 36%|███▋ | 33/91 [00:54<01:35, 0.61it/s, v_num=0, loss_step=50.20]
Epoch 0: 36%|███▋ | 33/91 [00:54<01:35, 0.61it/s, v_num=0, loss_step=49.80]
Epoch 0: 37%|███▋ | 34/91 [00:55<01:33, 0.61it/s, v_num=0, loss_step=49.80]
Epoch 0: 37%|███▋ | 34/91 [00:55<01:33, 0.61it/s, v_num=0, loss_step=49.10]
Epoch 0: 38%|███▊ | 35/91 [00:57<01:32, 0.61it/s, v_num=0, loss_step=49.10]
Epoch 0: 38%|███▊ | 35/91 [00:57<01:32, 0.61it/s, v_num=0, loss_step=48.70]
Epoch 0: 40%|███▉ | 36/91 [00:59<01:30, 0.61it/s, v_num=0, loss_step=48.70]
Epoch 0: 40%|███▉ | 36/91 [00:59<01:30, 0.61it/s, v_num=0, loss_step=47.70]
Epoch 0: 41%|████ | 37/91 [01:00<01:28, 0.61it/s, v_num=0, loss_step=47.70]
Epoch 0: 41%|████ | 37/91 [01:00<01:28, 0.61it/s, v_num=0, loss_step=47.00]
Epoch 0: 42%|████▏ | 38/91 [01:02<01:27, 0.61it/s, v_num=0, loss_step=47.00]
Epoch 0: 42%|████▏ | 38/91 [01:02<01:27, 0.61it/s, v_num=0, loss_step=47.40]
Epoch 0: 43%|████▎ | 39/91 [01:04<01:25, 0.61it/s, v_num=0, loss_step=47.40]
Epoch 0: 43%|████▎ | 39/91 [01:04<01:25, 0.61it/s, v_num=0, loss_step=46.00]
Epoch 0: 44%|████▍ | 40/91 [01:05<01:23, 0.61it/s, v_num=0, loss_step=46.00]
Epoch 0: 44%|████▍ | 40/91 [01:05<01:23, 0.61it/s, v_num=0, loss_step=45.90]
Epoch 0: 45%|████▌ | 41/91 [01:07<01:22, 0.61it/s, v_num=0, loss_step=45.90]
Epoch 0: 45%|████▌ | 41/91 [01:07<01:22, 0.61it/s, v_num=0, loss_step=45.20]
Epoch 0: 46%|████▌ | 42/91 [01:08<01:20, 0.61it/s, v_num=0, loss_step=45.20]
Epoch 0: 46%|████▌ | 42/91 [01:08<01:20, 0.61it/s, v_num=0, loss_step=43.90]
Epoch 0: 47%|████▋ | 43/91 [01:10<01:18, 0.61it/s, v_num=0, loss_step=43.90]
Epoch 0: 47%|████▋ | 43/91 [01:10<01:18, 0.61it/s, v_num=0, loss_step=42.80]
Epoch 0: 48%|████▊ | 44/91 [01:12<01:17, 0.61it/s, v_num=0, loss_step=42.80]
Epoch 0: 48%|████▊ | 44/91 [01:12<01:17, 0.61it/s, v_num=0, loss_step=43.00]
Epoch 0: 49%|████▉ | 45/91 [01:13<01:15, 0.61it/s, v_num=0, loss_step=43.00]
Epoch 0: 49%|████▉ | 45/91 [01:13<01:15, 0.61it/s, v_num=0, loss_step=42.80]
Epoch 0: 51%|█████ | 46/91 [01:15<01:13, 0.61it/s, v_num=0, loss_step=42.80]
Epoch 0: 51%|█████ | 46/91 [01:15<01:13, 0.61it/s, v_num=0, loss_step=40.60]
Epoch 0: 52%|█████▏ | 47/91 [01:17<01:12, 0.61it/s, v_num=0, loss_step=40.60]
Epoch 0: 52%|█████▏ | 47/91 [01:17<01:12, 0.61it/s, v_num=0, loss_step=39.50]
Epoch 0: 53%|█████▎ | 48/91 [01:18<01:10, 0.61it/s, v_num=0, loss_step=39.50]
Epoch 0: 53%|█████▎ | 48/91 [01:18<01:10, 0.61it/s, v_num=0, loss_step=40.10]
Epoch 0: 54%|█████▍ | 49/91 [01:20<01:08, 0.61it/s, v_num=0, loss_step=40.10]
Epoch 0: 54%|█████▍ | 49/91 [01:20<01:08, 0.61it/s, v_num=0, loss_step=39.30]
Epoch 0: 55%|█████▍ | 50/91 [01:22<01:07, 0.61it/s, v_num=0, loss_step=39.30]
Epoch 0: 55%|█████▍ | 50/91 [01:22<01:07, 0.61it/s, v_num=0, loss_step=39.30]
Epoch 0: 56%|█████▌ | 51/91 [01:23<01:05, 0.61it/s, v_num=0, loss_step=39.30]
Epoch 0: 56%|█████▌ | 51/91 [01:23<01:05, 0.61it/s, v_num=0, loss_step=37.60]
Epoch 0: 57%|█████▋ | 52/91 [01:25<01:03, 0.61it/s, v_num=0, loss_step=37.60]
Epoch 0: 57%|█████▋ | 52/91 [01:25<01:03, 0.61it/s, v_num=0, loss_step=39.00]
Epoch 0: 58%|█████▊ | 53/91 [01:26<01:02, 0.61it/s, v_num=0, loss_step=39.00]
Epoch 0: 58%|█████▊ | 53/91 [01:26<01:02, 0.61it/s, v_num=0, loss_step=37.70]
Epoch 0: 59%|█████▉ | 54/91 [01:28<01:00, 0.61it/s, v_num=0, loss_step=37.70]
Epoch 0: 59%|█████▉ | 54/91 [01:28<01:00, 0.61it/s, v_num=0, loss_step=36.70]
Epoch 0: 60%|██████ | 55/91 [01:30<00:59, 0.61it/s, v_num=0, loss_step=36.70]
Epoch 0: 60%|██████ | 55/91 [01:30<00:59, 0.61it/s, v_num=0, loss_step=36.00]
Epoch 0: 62%|██████▏ | 56/91 [01:31<00:57, 0.61it/s, v_num=0, loss_step=36.00]
Epoch 0: 62%|██████▏ | 56/91 [01:31<00:57, 0.61it/s, v_num=0, loss_step=35.80]
Epoch 0: 63%|██████▎ | 57/91 [01:33<00:55, 0.61it/s, v_num=0, loss_step=35.80]
Epoch 0: 63%|██████▎ | 57/91 [01:33<00:55, 0.61it/s, v_num=0, loss_step=35.30]
Epoch 0: 64%|██████▎ | 58/91 [01:35<00:54, 0.61it/s, v_num=0, loss_step=35.30]
Epoch 0: 64%|██████▎ | 58/91 [01:35<00:54, 0.61it/s, v_num=0, loss_step=33.40]
Epoch 0: 65%|██████▍ | 59/91 [01:36<00:52, 0.61it/s, v_num=0, loss_step=33.40]
Epoch 0: 65%|██████▍ | 59/91 [01:36<00:52, 0.61it/s, v_num=0, loss_step=34.30]
Epoch 0: 66%|██████▌ | 60/91 [01:38<00:50, 0.61it/s, v_num=0, loss_step=34.30]
Epoch 0: 66%|██████▌ | 60/91 [01:38<00:50, 0.61it/s, v_num=0, loss_step=33.60]
Epoch 0: 67%|██████▋ | 61/91 [01:39<00:49, 0.61it/s, v_num=0, loss_step=33.60]
Epoch 0: 67%|██████▋ | 61/91 [01:39<00:49, 0.61it/s, v_num=0, loss_step=32.10]
Epoch 0: 68%|██████▊ | 62/91 [01:41<00:47, 0.61it/s, v_num=0, loss_step=32.10]
Epoch 0: 68%|██████▊ | 62/91 [01:41<00:47, 0.61it/s, v_num=0, loss_step=31.30]
Epoch 0: 69%|██████▉ | 63/91 [01:43<00:45, 0.61it/s, v_num=0, loss_step=31.30]
Epoch 0: 69%|██████▉ | 63/91 [01:43<00:45, 0.61it/s, v_num=0, loss_step=32.00]
Epoch 0: 70%|███████ | 64/91 [01:44<00:44, 0.61it/s, v_num=0, loss_step=32.00]
Epoch 0: 70%|███████ | 64/91 [01:44<00:44, 0.61it/s, v_num=0, loss_step=30.80]
Epoch 0: 71%|███████▏ | 65/91 [01:46<00:42, 0.61it/s, v_num=0, loss_step=30.80]
Epoch 0: 71%|███████▏ | 65/91 [01:46<00:42, 0.61it/s, v_num=0, loss_step=30.90]
Epoch 0: 73%|███████▎ | 66/91 [01:48<00:40, 0.61it/s, v_num=0, loss_step=30.90]
Epoch 0: 73%|███████▎ | 66/91 [01:48<00:40, 0.61it/s, v_num=0, loss_step=31.20]
Epoch 0: 74%|███████▎ | 67/91 [01:49<00:39, 0.61it/s, v_num=0, loss_step=31.20]
Epoch 0: 74%|███████▎ | 67/91 [01:49<00:39, 0.61it/s, v_num=0, loss_step=30.40]
Epoch 0: 75%|███████▍ | 68/91 [01:51<00:37, 0.61it/s, v_num=0, loss_step=30.40]
Epoch 0: 75%|███████▍ | 68/91 [01:51<00:37, 0.61it/s, v_num=0, loss_step=29.50]
Epoch 0: 76%|███████▌ | 69/91 [01:53<00:36, 0.61it/s, v_num=0, loss_step=29.50]
Epoch 0: 76%|███████▌ | 69/91 [01:53<00:36, 0.61it/s, v_num=0, loss_step=32.10]
Epoch 0: 77%|███████▋ | 70/91 [01:54<00:34, 0.61it/s, v_num=0, loss_step=32.10]
Epoch 0: 77%|███████▋ | 70/91 [01:54<00:34, 0.61it/s, v_num=0, loss_step=28.30]
Epoch 0: 78%|███████▊ | 71/91 [01:56<00:32, 0.61it/s, v_num=0, loss_step=28.30]
Epoch 0: 78%|███████▊ | 71/91 [01:56<00:32, 0.61it/s, v_num=0, loss_step=29.80]
Epoch 0: 79%|███████▉ | 72/91 [01:58<00:31, 0.61it/s, v_num=0, loss_step=29.80]
Epoch 0: 79%|███████▉ | 72/91 [01:58<00:31, 0.61it/s, v_num=0, loss_step=31.20]
Epoch 0: 80%|████████ | 73/91 [01:59<00:29, 0.61it/s, v_num=0, loss_step=31.20]
Epoch 0: 80%|████████ | 73/91 [01:59<00:29, 0.61it/s, v_num=0, loss_step=28.20]
Epoch 0: 81%|████████▏ | 74/91 [02:01<00:27, 0.61it/s, v_num=0, loss_step=28.20]
Epoch 0: 81%|████████▏ | 74/91 [02:01<00:27, 0.61it/s, v_num=0, loss_step=30.10]
Epoch 0: 82%|████████▏ | 75/91 [02:03<00:26, 0.61it/s, v_num=0, loss_step=30.10]
Epoch 0: 82%|████████▏ | 75/91 [02:03<00:26, 0.61it/s, v_num=0, loss_step=30.50]
Epoch 0: 84%|████████▎ | 76/91 [02:04<00:24, 0.61it/s, v_num=0, loss_step=30.50]
Epoch 0: 84%|████████▎ | 76/91 [02:04<00:24, 0.61it/s, v_num=0, loss_step=28.60]
Epoch 0: 85%|████████▍ | 77/91 [02:06<00:22, 0.61it/s, v_num=0, loss_step=28.60]
Epoch 0: 85%|████████▍ | 77/91 [02:06<00:22, 0.61it/s, v_num=0, loss_step=28.50]
Epoch 0: 86%|████████▌ | 78/91 [02:07<00:21, 0.61it/s, v_num=0, loss_step=28.50]
Epoch 0: 86%|████████▌ | 78/91 [02:07<00:21, 0.61it/s, v_num=0, loss_step=28.30]
Epoch 0: 87%|████████▋ | 79/91 [02:09<00:19, 0.61it/s, v_num=0, loss_step=28.30]
Epoch 0: 87%|████████▋ | 79/91 [02:09<00:19, 0.61it/s, v_num=0, loss_step=28.80]
Epoch 0: 88%|████████▊ | 80/91 [02:11<00:18, 0.61it/s, v_num=0, loss_step=28.80]
Epoch 0: 88%|████████▊ | 80/91 [02:11<00:18, 0.61it/s, v_num=0, loss_step=30.20]
Epoch 0: 89%|████████▉ | 81/91 [02:12<00:16, 0.61it/s, v_num=0, loss_step=30.20]
Epoch 0: 89%|████████▉ | 81/91 [02:12<00:16, 0.61it/s, v_num=0, loss_step=28.20]
Epoch 0: 90%|█████████ | 82/91 [02:14<00:14, 0.61it/s, v_num=0, loss_step=28.20]
Epoch 0: 90%|█████████ | 82/91 [02:14<00:14, 0.61it/s, v_num=0, loss_step=27.30]
Epoch 0: 91%|█████████ | 83/91 [02:16<00:13, 0.61it/s, v_num=0, loss_step=27.30]
Epoch 0: 91%|█████████ | 83/91 [02:16<00:13, 0.61it/s, v_num=0, loss_step=30.80]
Epoch 0: 92%|█████████▏| 84/91 [02:17<00:11, 0.61it/s, v_num=0, loss_step=30.80]
Epoch 0: 92%|█████████▏| 84/91 [02:17<00:11, 0.61it/s, v_num=0, loss_step=28.50]
Epoch 0: 93%|█████████▎| 85/91 [02:19<00:09, 0.61it/s, v_num=0, loss_step=28.50]
Epoch 0: 93%|█████████▎| 85/91 [02:19<00:09, 0.61it/s, v_num=0, loss_step=28.70]
Epoch 0: 95%|█████████▍| 86/91 [02:21<00:08, 0.61it/s, v_num=0, loss_step=28.70]
Epoch 0: 95%|█████████▍| 86/91 [02:21<00:08, 0.61it/s, v_num=0, loss_step=29.20]
Epoch 0: 96%|█████████▌| 87/91 [02:22<00:06, 0.61it/s, v_num=0, loss_step=29.20]
Epoch 0: 96%|█████████▌| 87/91 [02:22<00:06, 0.61it/s, v_num=0, loss_step=27.60]
Epoch 0: 97%|█████████▋| 88/91 [02:24<00:04, 0.61it/s, v_num=0, loss_step=27.60]
Epoch 0: 97%|█████████▋| 88/91 [02:24<00:04, 0.61it/s, v_num=0, loss_step=27.30]
Epoch 0: 98%|█████████▊| 89/91 [02:26<00:03, 0.61it/s, v_num=0, loss_step=27.30]
Epoch 0: 98%|█████████▊| 89/91 [02:26<00:03, 0.61it/s, v_num=0, loss_step=29.00]
Epoch 0: 99%|█████████▉| 90/91 [02:27<00:01, 0.61it/s, v_num=0, loss_step=29.00]
Epoch 0: 99%|█████████▉| 90/91 [02:27<00:01, 0.61it/s, v_num=0, loss_step=30.20]
Epoch 0: 100%|██████████| 91/91 [02:29<00:00, 0.61it/s, v_num=0, loss_step=30.20]
Epoch 0: 100%|██████████| 91/91 [02:29<00:00, 0.61it/s, v_num=0, loss_step=28.80]
Validation: | | 0/? [00:00<?, ?it/s]
Validation: 0%| | 0/2 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/2 [00:00<?, ?it/s]
Validation DataLoader 0: 50%|█████ | 1/2 [00:00<00:00, 1.67it/s]
Validation DataLoader 0: 100%|██████████| 2/2 [00:00<00:00, 2.21it/s]
Epoch 0: 100%|██████████| 91/91 [02:30<00:00, 0.60it/s, v_num=0, loss_step=28.80, val_loss=29.80]
Epoch 0: 100%|██████████| 91/91 [02:30<00:00, 0.60it/s, v_num=0, loss_step=28.80, val_loss=29.80, loss_epoch=41.40]
Epoch 0: 100%|██████████| 91/91 [02:30<00:00, 0.60it/s, v_num=0, loss_step=28.80, val_loss=29.80, loss_epoch=41.40]
Total running time of the script: (2 minutes 32.255 seconds)
Estimated memory usage: 535 MB