Source code for doc_octopy.models.definitions.raul_net.online.v9_5_grids

"""Model definitions used in the Sîmpetru et al. (2023 and 2024)"""
from functools import reduce
from typing import Any, Dict, Optional, Tuple, Union

import pytorch_lightning as pl
import torch
import torch.optim as optim
from torch import nn


[docs] class RaulNetV9(pl.LightningModule): """Model definition used in Sîmpetru et al. [1]_ [2]_ Attributes ---------- learning_rate : float The learning rate. nr_of_input_channels : int The number of input channels. nr_of_outputs : int The number of outputs. cnn_encoder_channels : Tuple[int, int, int] Tuple containing 3 integers defining the cnn encoder channels. mlp_encoder_channels : Tuple[int, int] Tuple containing 2 integers defining the mlp encoder channels. event_search_kernel_length : int Integer that sets the length of the kernels searching for action potentials. event_search_kernel_stride : int Integer that sets the stride of the kernels searching for action potentials. Notes ----- .. [1] Sîmpetru, R.C., März, M., Del Vecchio, A., 2023. Proportional and simultaneous real-time control of the full human hand from high-density electromyography. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3118–3131. https://doi.org/10/gsgk4s .. [2] Sîmpetru, R.C., Cnejevici, V., Farina, D., Del Vecchio, A., 2024. Influence of spatio-temporal filtering on hand kinematics estimation from high-density EMG signals. J. Neural Eng. 21. https://doi.org/10/gtm4bt """ def __init__( self, learning_rate: float, nr_of_input_channels: int, input_length__samples: int, nr_of_outputs: int, cnn_encoder_channels: Tuple[int, int, int], mlp_encoder_channels: Tuple[int, int], event_search_kernel_length: int, event_search_kernel_stride: int, ): super(RaulNetV9, self).__init__() self.save_hyperparameters() self.learning_rate = learning_rate self.nr_of_input_channels = nr_of_input_channels self.nr_of_outputs = nr_of_outputs self.input_length__samples = input_length__samples self.cnn_encoder_channels = cnn_encoder_channels self.mlp_encoder_channels = mlp_encoder_channels self.event_search_kernel_length = event_search_kernel_length self.event_search_kernel_stride = event_search_kernel_stride self.criterion = nn.L1Loss() self.cnn_encoder = nn.Sequential( nn.Conv3d( self.nr_of_input_channels, self.cnn_encoder_channels[0], kernel_size=(1, 1, self.event_search_kernel_length), stride=(1, 1, self.event_search_kernel_stride), groups=self.nr_of_input_channels, ), nn.GELU(), nn.InstanceNorm3d(self.cnn_encoder_channels[0], track_running_stats=False), nn.Dropout3d(p=0.25), nn.Conv3d( self.cnn_encoder_channels[0], self.cnn_encoder_channels[1], kernel_size=(5, 32, 18), dilation=(1, 2, 1), padding=(2, 16, 0), padding_mode="circular", ), nn.GELU(), nn.InstanceNorm3d(self.cnn_encoder_channels[1], track_running_stats=False), nn.Conv3d( self.cnn_encoder_channels[1], self.cnn_encoder_channels[2], kernel_size=(5, 9, 1), ), nn.GELU(), nn.InstanceNorm3d(self.cnn_encoder_channels[2], track_running_stats=False), nn.Flatten(), ) self.mlp_encoder = nn.Sequential( nn.Linear( reduce( lambda x, y: x * int(y), self.cnn_encoder( torch.rand( ( 1, self.nr_of_input_channels, 5, 64, self.input_length__samples, ) ) ).shape[1:], 1, ), self.mlp_encoder_channels[0], ), nn.GELU(), nn.Linear(self.mlp_encoder_channels[0], self.mlp_encoder_channels[1]), nn.GELU(), nn.Linear(self.mlp_encoder_channels[1], self.nr_of_outputs), )
[docs] def forward(self, inputs) -> torch.Tensor: x = self._reshape_and_normalize(inputs) x = self.cnn_encoder(x) x = self.mlp_encoder(x) return x
@staticmethod def _reshape_and_normalize(inputs): x = torch.stack(inputs.split(64, dim=2), dim=2) return (x - x.mean(dim=(3, 4), keepdim=True)) / ( x.std(dim=(3, 4), keepdim=True, unbiased=True) + 1e-15 ) def configure_optimizers(self): optimizer = optim.AdamW( self.parameters(), lr=self.learning_rate, amsgrad=True, weight_decay=0.32 ) lr_scheduler = { "scheduler": optim.lr_scheduler.OneCycleLR( optimizer, max_lr=self.learning_rate * (10**1.5), total_steps=self.trainer.estimated_stepping_batches, anneal_strategy="cos", three_phase=False, div_factor=10**1.5, final_div_factor=1e3, ), "name": "OneCycleLR", "interval": "step", "frequency": 1, } return [optimizer], [lr_scheduler] def training_step( self, train_batch, batch_idx: int ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = train_batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = {"loss": self.criterion(prediction, ground_truths)} if scores_dict["loss"].isnan().item(): return None self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) self.log_dict( {f"train/{k}": v for k, v in scores_dict.items()}, prog_bar=False, logger=True, on_epoch=True, on_step=False, sync_dist=True, ) return scores_dict def validation_step( self, batch, batch_idx ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = {"val_loss": self.criterion(prediction, ground_truths)} self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) return scores_dict def test_step( self, batch, batch_idx ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = {"loss": self.criterion(prediction, ground_truths)} self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) self.log_dict( {f"test/{k}": v for k, v in scores_dict.items()}, prog_bar=False, logger=True, on_epoch=False, on_step=True, sync_dist=True, ) return scores_dict