Source code for doc_octopy.models.definitions.raul_net.online.v16

"""Model definitions not used in any publication"""
from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import lightning as L
import torch
import torch.nn as nn
import torch.optim as optim


[docs] class RaulNetV16(L.LightningModule): """Model definition not used in any publication Attributes ---------- learning_rate : float The learning rate. nr_of_input_channels : int The number of input channels. nr_of_outputs : int The number of outputs. cnn_encoder_channels : Tuple[int, int, int] Tuple containing 3 integers defining the cnn encoder channels. mlp_encoder_channels : Tuple[int, int] Tuple containing 2 integers defining the mlp encoder channels. event_search_kernel_length : int Integer that sets the length of the kernels searching for action potentials. event_search_kernel_stride : int Integer that sets the stride of the kernels searching for action potentials. """ def __init__( self, learning_rate: float, nr_of_input_channels: int, input_length__samples: int, nr_of_outputs: int, cnn_encoder_channels: Tuple[int, int, int], mlp_encoder_channels: Tuple[int, int], event_search_kernel_length: int, event_search_kernel_stride: int, nr_of_electrode_grids: int = 3, nr_of_electrodes_per_grid: int = 36, inference_only: bool = False, ): super(RaulNetV16, self).__init__() self.save_hyperparameters() self.learning_rate = learning_rate self.nr_of_input_channels = nr_of_input_channels self.nr_of_outputs = nr_of_outputs self.input_length__samples = input_length__samples self.cnn_encoder_channels = cnn_encoder_channels self.mlp_encoder_channels = mlp_encoder_channels self.event_search_kernel_length = event_search_kernel_length self.event_search_kernel_stride = event_search_kernel_stride self.nr_of_electrode_grids = nr_of_electrode_grids self.nr_of_electrodes_per_grid = nr_of_electrodes_per_grid self.inference_only = inference_only self.criterion = nn.L1Loss() self.cnn_encoder = nn.Sequential( nn.Conv3d( self.nr_of_input_channels, self.cnn_encoder_channels[0], kernel_size=(1, 1, self.event_search_kernel_length), stride=(1, 1, self.event_search_kernel_stride), groups=self.nr_of_input_channels, ), nn.GELU(approximate="tanh"), nn.InstanceNorm3d(self.cnn_encoder_channels[0]), nn.Dropout3d(p=0.20), nn.Conv3d( self.cnn_encoder_channels[0], self.cnn_encoder_channels[1], kernel_size=( self.nr_of_electrode_grids, int(np.floor(self.nr_of_electrodes_per_grid / 2)), 18, ), dilation=(1, 2, 1), padding=( int(np.floor(self.nr_of_electrode_grids / 2)), int(np.floor(self.nr_of_electrodes_per_grid / 4)), 0, ), padding_mode="circular", ), nn.GELU(approximate="tanh"), nn.InstanceNorm3d(self.cnn_encoder_channels[1]), nn.Conv3d( self.cnn_encoder_channels[1], self.cnn_encoder_channels[2], kernel_size=( self.nr_of_electrode_grids, int(np.floor(self.nr_of_electrodes_per_grid / 7)), 1, ), ), nn.GELU(approximate="tanh"), nn.InstanceNorm3d(self.cnn_encoder_channels[2]), nn.Flatten(), ) self.mlp = nn.Sequential( nn.Linear( self.cnn_encoder( torch.rand( ( 1, self.nr_of_input_channels, self.nr_of_electrode_grids, self.nr_of_electrodes_per_grid, self.input_length__samples, ) ) ) .detach() .shape[1], self.mlp_encoder_channels[0], ), nn.GELU(approximate="tanh"), nn.Linear(self.mlp_encoder_channels[0], self.mlp_encoder_channels[1]), nn.GELU(approximate="tanh"), nn.Linear(self.mlp_encoder_channels[1], self.nr_of_outputs), )
[docs] def forward(self, inputs) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: x = self._reshape_and_normalize(inputs) x = self.cnn_encoder(x) x = self.mlp(x) return x
def _reshape_and_normalize(self, inputs): x = torch.stack(inputs.split(self.nr_of_electrodes_per_grid, dim=2), dim=2) return (x - x.mean(dim=(3, 4), keepdim=True)) / ( x.std(dim=(3, 4), keepdim=True, unbiased=True) + 1e-15 ) def configure_optimizers(self): optimizer = optim.AdamW( self.parameters(), lr=self.learning_rate, amsgrad=True, weight_decay=0.32 ) lr_scheduler = { "scheduler": optim.lr_scheduler.OneCycleLR( optimizer, max_lr=self.learning_rate * (10**1.5), total_steps=self.trainer.estimated_stepping_batches, anneal_strategy="cos", three_phase=False, div_factor=10**1.5, final_div_factor=1e3, ), "name": "OneCycleLR", "interval": "step", "frequency": 1, } return [optimizer], [lr_scheduler] def training_step( self, train_batch, batch_idx: int ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = train_batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = { "loss": self.criterion(prediction, ground_truths), } if scores_dict["loss"].isnan().item(): return None self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) self.log_dict( {f"train/{k}": v for k, v in scores_dict.items()}, prog_bar=False, logger=True, on_epoch=True, on_step=False, sync_dist=True, ) return scores_dict def validation_step( self, batch, batch_idx ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = { "val_loss": self.criterion(prediction, ground_truths), } self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) return scores_dict def test_step( self, batch, batch_idx ) -> Optional[Union[torch.Tensor, Dict[str, Any]]]: inputs, ground_truths = batch ground_truths = ground_truths[:, 0] prediction = self(inputs) scores_dict = {"loss": self.criterion(prediction, ground_truths)} self.log_dict( scores_dict, prog_bar=True, logger=False, on_epoch=True, sync_dist=True ) self.log_dict( {f"test/{k}": v for k, v in scores_dict.items()}, prog_bar=False, logger=True, on_epoch=False, on_step=True, sync_dist=True, ) return scores_dict